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To produce effective collision avoidance behaviours, the nervous _ _ _ _ _
. . The relationship between the half size and approach velocity of compound objects (/]v])_,
system must be able to extract salient sensory cues related to looming
can be described by the formula

stimuli (objects approaching on a direct collision course). ! : / n ] 6 ApproaCh pal’ametel’s 1 0 Response mOdUIation induced Compound objects

Characterization of looming sensitive neurons in insects ' and birds * v - Z v F b Chan in tl’a -ecto ~ Lawiili) eiEaus GhEes evele chameeis e BEND Eauses
have led to studies that provide insights into biophysical mechanisms o = l’ 180° azimuth----------- T - 0° azimuth y g g .’ ry '
I ] ] 5,6 ’I\\ ] [ ] [ ] [ ] [ ]
unde_rlylng s ploliiiss t‘_) S'"_97|9 approaches of b?S'C shapes >° or where n is the number of unique edges (7=3) and P, is the proportion of the object perimeter R e Similar //|v| values evoke similar response profiles, irrespective of
mlfltlple local motion stimuli . I_n the natural en\{lronment, however, occupied by each unique edge type. EETEN | object complexity.
animals are often confronted with complex spatiotemporal patterns E: Approaches of simple spheres (/|| = 12 ms
of visual information. For example, recent studies based on responses s o N (black) or 23 ms (pink)) started 90" from the
. . g . . . . . L . A o' . P center of the right eye and ended either on a
to SImp"fled stimuli have shown that sallency of visual cues is often Compound ObleCt Shape screeNﬁ\ o - R e o, direct collision course (A, C) or in a plane Paired ob'ects
influenced by emergent properties of complex visual scenes 8. surface ) ’ ; ' ” c Y 1 parallel to the long axis of the animal (B, D). raired onjects
However, little is known of how responses of looming sensitive HCO VCO XCO E T £2 E;"f;;,";gt a,\'ffr::laif::tsﬁ‘zz[z;':’r':ai%e?)’ 4 . . : - SR, :
neurons are influenced by visual complexiy Uhf) =1.0ms (b)) =1.0ms () =132 ms 00° azimuth o ended 15 om rosra (0" n B.0) or 15 om " ceconds sarlier do not affect responses to later approaches.
The locust visual system contains a well defined neural pathway 0 0 0 7 cm caudal (180° in B, D) to the right eye. Grey P PP '

(dome apex) bars represent times of non-direct approaches

composed of the lobula giant movement detector (LGMD) and its

) _ O —~ and the boundaries indicate the timing of a e Simultaneous or closely timed approaches evoke sublinear
postsynaptic _targ_et, the descer_idlng contr_alater_al m_ovement detector 1 5 Y trajectory change. Discs and locust images responses.
(DCMD), that is highly responsive to looming stimuli 2,3,9,10, o = 45° azi th E = 40 - not to spatial scale. Modulations of the DCMD
Postsynaptic nonlinear integration of excitatory and feed-forward 135" azimuth azimu “ T 204 K firing rat: tc'e_a”:’ follow changes In the e Looming responses are affected by the direction of approach.
inhibitory inputs 57 likely underlie the biophysical mechanisms of — ., pproach frqectory.
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looming responses in the LGMD, which is characterized by a firing rate
that peaks after a certain retinal threshold angle is exceeded >3, ! |
The time of peak firing is related to the ratio of the half size of the 23 cm
object (/) and its approach velocity (v) (/|v]). LGMD spikes are
transferred to the DCMD in a 1:1 manner ' via mixed electrical and
chemical synapses >'%, Subsequently, the DCMD connects to flight

[ Sublinear response to Compound trajectories
Sim UItaneOUS apprOaCheS e Changes to non-looming trajectories during an approach evoke

transient, delayed increases in the firing rate.

4 pcmp responses to simple and

interneurons and motorneurons within the thoracic ganglia '"'°. . . __ 4004 — ‘1125 I\

Therefore, looming responses in this pathway may have consequences Compound IOOmlng ObjeCts g'm —— 45° and 135° /| \

for collision avoidance behaviours that are influenced by the angular g>§ 200 A3 \|

threshold size of an approaching object 22°. Recent recordings of A e B e I.th;{v,‘\.. ik =g { 950 250- =

DCMD responses to looming stimuli in tethered flying locusts ' i BRI N 0 i 27 200- 200- CO n c I u s ' O n s

notwithstanding, the role of the LGMD/DCMD pathway in collision R @ = 3002 A JEAHE 06 04 -02 0 02 = 9 150 150-

avoidance has not yet been explored directly. ,? &v w i, g g 200 Time to collision (s) UE_ ’9‘,. 100- 100- _ _ - _ _ »
Results from habituation experiments ** predict that the LGMD ‘ “ '|\ 1\H l“fiﬁ 3 Iﬂ# i ! ZE 'E. 100 - Mean plots of smoothed histograms for single approaches from 45° (red line) and 135° (blue - 58- 53- ° En.COdmg S (L) (200 E ol el [ s e RV s elisilie 42

should be able to respond to approaches of multiple objects i *"m”"“h :i% &FV " L o line are overlaid with plots of the response to simultaneous approaches (black line) and the so- 80 - ' object shape.

predicted linear sum of individual approaches (dashed line).

approaching from different trajectories. Therefore, we designed C e 60 -
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on looming responses in this pathway by recording activity in the 5o ! ;-;; A o effect of non-overla in h © 20 I closely timed paired approaches are strongly sublinear.
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— £ < . Responses were not affected by previous approaches from a different region of the visual field 1.0 -0.8 -06 -04 -02 00 0.2 1.0 -0.8 -06 -04 -02 00 0.2 * Record DCMD activity of flying animals presented with the same
5 150 0 — : : : : 2 0. : : : : : 2 0. : i ]
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