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Sublinear processing of compound and multiple object motion
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Compound objects
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The relationship between the half size and approach velocity of compound objects (l/|v|)o,
can be described by the formula:

where n is the number of unique edges (n=3) and Pi is the proportion of the object perimeter
occupied by each unique edge type.
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compound object

3 Compound object shape

4 DCMD responses to simple and
      compound looming objects 

5 Invariance to object shape

Response profiles are similar for compound objects ((l/|v|)o = 11 - 13.2 ms) and simple objects
with similar approach parameters (l/|v| = 12 ms).  (mean (black line) + SD (grey line)).
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Locusts were mounted on a rigid tether such that the right eye was centred on the apex of the
rear projection dome screen.  A bipolar extracellular hook electrode was used to record DCMD
activity from the ventral nerve cord during stimulus presentation. Synchronization pulses
from the stimulus generation computer were used to align DCMD activity with the looming stimuli.
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2 DCMD firing properties
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Rasters of DCMD spike times (top) were 
smoothed with a 50 ms Gaussian filter to
estimate the instantaneous firing rate
middle) during approach (bottom).  To
quantify the DCMD response profile we
measured the amplitude and time of peak
firing (*), the peak width at ½ the peak
firing rate (w at ½ max), the firing rate
200 ms before collision (arrow) and the
total number of DCMD spikes. This
figure shows the response to one
approach of a 7 cm disc at 3 m s-1 from
90°.

l/|v| = 12 ms
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6 Approach parameters

7 Sublinear response to
     simultaneous approaches

8 No effect of non-overlapping
     approach intervals (4 or 3 s)

9 Sublinear response during short
    approach intervals (106 ms)
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Compound trajectories
10 Response modulation induced
        by changing trajectory
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Approaches of simple spheres (l/|v| = 12 ms
(black) or 23 ms (pink)) started 90° from the
center of the right eye and ended either on a
direct collision course (A, C) or in a plane
parallel to the long axis of the animal (B, D).
Final direct approaches were from 90° (A), 45°
or 135° (C).  Non direct final approaches
ended 15 cm rostral (0° in B,D) or 15 cm
caudal (180° in B, D) to the right eye.  Grey
bars represent times of non-direct approaches
and the boundaries indicate the timing of a
trajectory change.  Discs and locust images
not to spatial scale.  Modulations of the DCMD
firing rate clearly follow changes in the
approach trajectory. 
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DCMD firing parameters were similar during approaches
of simple small discs and compound objects with similar 
approach parameters.  A) There were no significant
differences in the time of peak firing or the peak width
at ½ peak amplitude.  There were significant, though
small, differences in the peak firing rate, the firing rate
200 ms  before collision and the total number of spikes.
Bars with the same letters were not significantly different
at α = 0.05 (one way ANOVA).  B) The linear relationship
between (l/|v|)o and the peak firing time during approach 11

was maintained for simple and compound objects.

Mean plots of smoothed histograms for single approaches from 45° (red line) and 135° (blue
line are overlaid with plots of the response to simultaneous approaches (black line) and the
predicted linear sum of individual approaches (dashed line).

Responses were not affected by previous approaches from a different region of the visual field
either 4 seconds (A, B) or 3 seconds (C, D) earlier.  Initial approaches were from 45° (A, C) or
135° (B, D).  Approaches from 135° did, however, evoke larger responses than did approaches
from 45°.  The arrowhead indicates the time of the DCMD off response when the initial object
disappeared (4 s interval). For 3 s intervals the first object remained on the screen.

A) Histogram from a single trial showing that paired
approaches 106 ms apart evoked two distinct peaks
delimited by a decreased firing rate (valley, ∆).
B) As with simultaneous approaches, responses to
paired approaches (black line) were sublinear and were
effected by the direction of the initial approach.  Data
represented as in Fig. 7.
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Compound objects 

Paired objects 

Compound trajectories 

Looming compound objects evoke characteristic DCMD responses. 

Similar l/|v| values evoke similar response profiles, irrespective of 
object complexity.

Previous approaches from different regions of the visual field 3 or 4
seconds earlier do not affect responses to later approaches. 

Simultaneous or closely timed approaches evoke sublinear
responses.

Looming responses are affected by the direction of approach.

Changes to non-looming trajectories during an approach evoke
transient, delayed increases in the firing rate.

Encoding of object approach properties is relatively insensitive to
object shape.

Responses to individual looming objects during simultaneous or
closely timed paired approaches are strongly sublinear.

Test effects trajectory changes from initial non-looming to looming.

DCMD activity is affected by the timing and direction of trajectory
changes during an approach.

Test for DCMD habituation during repeated approaches of objects
traveling along varying paths.

Examine effects of compound trajectories on behavioural responses
of loosely tethered flying locusts.

Record DCMD activity of flying animals presented with the same
stimuli used here.


